Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396938

RESUMO

Protection of the coronary arteries during donor heart maintenance is pivotal to improve results and prevent the development of coronary allograft vasculopathy. The effect of hypothermic, oxygenated perfusion (HOP) with the traditional HTK and the novel HTK-N solution on the coronary microvasculature of donation-after-circulatory-death (DCD) hearts is known. However, the effect on the coronary macrovasculature is unknown. Thus, we maintained porcine DCD hearts by HOP with HTK or HTK-N for 4 h, followed by transplantation-equivalent reperfusion with blood for 2 h. Then, we removed the left anterior descending coronary artery (LAD) and compared the endothelial-dependent and -independent vasomotor function of both groups using bradykinin and sodium-nitroprusside (SNP). We also determined the transcriptome of LAD samples using microarrays. The endothelial-dependent relaxation was significantly better after HOP with HTK-N. The endothelial-independent relaxation was comparable between both groups. In total, 257 genes were expressed higher, and 668 genes were expressed lower in the HTK-N group. Upregulated genes/pathways were involved in endothelial and vascular smooth muscle cell preservation and heart development. Downregulated genes were related to ischemia/reperfusion injury, oxidative stress, mitochondrion organization, and immune reaction. The novel HTK-N solution preserves the endothelial function of DCD heart coronary arteries more effectively than traditional HTK.


Assuntos
Transplante de Coração , Suínos , Animais , Humanos , Transplante de Coração/métodos , Doadores de Tecidos , Coração , Perfusão , Vasos Coronários/fisiologia , Preservação de Órgãos/métodos
2.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279260

RESUMO

Donation after circulatory death (DCD) hearts are predominantly maintained by normothermic blood perfusion (NBP). Nevertheless, it was shown that hypothermic crystalloid perfusion (HCP) is superior to blood perfusion to recondition left ventricular (LV) contractility. However, transcriptomic changes in the myocardium and coronary artery in DCD hearts after HCP and NBP have not been investigated yet. In a pig model, DCD hearts were harvested and maintained for 4 h by NBP (DCD-BP group, N = 8) or HCP with oxygenated histidine-tryptophane-ketoglutarate (HTK) solution (DCD-HTK, N = 8) followed by reperfusion with fresh blood for 2 h. In the DCD group (N = 8), hearts underwent reperfusion immediately after procurement. In the control group (N = 7), no circulatory death was induced. We performed transcriptomics from LV myocardial and left anterior descending (LAD) samples using microarrays (25,470 genes). We applied the Boruta algorithm for variable selection to identify relevant genes. In the DCD-BP group, compared to DCD, six genes were regulated in the myocardium and 1915 genes were regulated in the LAD. In the DCD-HTK group, 259 genes were downregulated in the myocardium and 27 in the LAD; and 52 genes were upregulated in the myocardium and 765 in the LAD, compared to the DCD group. We identified seven genes of relevance for group identification: ITPRIP, G3BP1, ARRDC3, XPO6, NOP2, SPTSSA, and IL-6. NBP resulted in the upregulation of genes involved in mitochondrial calcium accumulation and ROS production, the reduction in microvascular endothelial sprouting, and inflammation. HCP resulted in the downregulation of genes involved in NF-κB-, STAT3-, and SASP-activation and inflammation.


Assuntos
Transplante de Coração , Suínos , Animais , Humanos , Transplante de Coração/métodos , Vasos Coronários , Transcriptoma , DNA Helicases , Doadores de Tecidos , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Miocárdio , Perfusão/métodos , Perfilação da Expressão Gênica , Inflamação , Preservação de Órgãos/métodos , Morte
3.
J Transl Med ; 21(1): 799, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946197

RESUMO

BACKGROUND: Heart transplantation (HTX) is the standard treatment for end-stage heart failure. However, reperfusion following an ischemic period can contribute to myocardial injury. Neutrophil infiltration, along with the subsequent release of tissue-degrading neutrophil elastase (NE)-related serine proteases and oxygen-derived radicals, is associated with adverse graft outcomes. The inhibition of cathepsin C (CatC) has been shown to block NE-related protease activation. We hypothesized that the CatC inhibitor BI-9740 improves graft function after HTX. METHODS: In a rat model of HTX, the recipient Lewis rats were orally administered with either a placebo (n = 12) or BI-9740 (n = 11, 20 mg/kg) once daily for 12 days. Donor hearts from untreated Lewis rats were explanted, preserved in a cardioplegic solution, and subsequently heterotopically implanted. In vivo left-ventricular (LV) graft function was assessed after 1 h of reperfusion. The proteolytic activity of neutrophil serine proteases was determined in bone marrow lysates from BI-9740-treated and control rats. Additionally, myocardial morphological changes were examined, and heart samples underwent immunohistochemistry and western blot analysis. RESULTS: The NE-related proteolytic activity in bone marrow cell lysates was markedly decreased in the BI-9740-treated rats compared to those of the placebo group. Histopathological lesions, elevated CatC and myeloperoxidase-positive cell infiltration, and nitrotyrosine immunoreactivity with an increased number of poly(ADP-ribose) polymerase (PARP)-1-positive cells were lowered in the hearts of animals treated with BI-9740 compared to placebo groups. Regarding the functional parameters of the implanted graft, improvements were observed in both systolic function (LV systolic pressure 110 ± 6 vs 74 ± 6 mmHg; dP/dtmax 2782 ± 149 vs 2076 ± 167 mmHg/s, LV developed pressure, at an intraventricular volume of 200 µl, p < 0.05) and diastolic function in the hearts of BI-9740 treated animals compared with those receiving the only placebo. Furthermore, the administration of BI-9740 resulted in a shorter graft re-beating time compared to the placebo group. However, this study did not provide evidence of DNA fragmentation, the generation of both superoxide anions and hydrogen peroxide, correlating with the absence of protein alterations related to apoptosis, as evidenced by western blot in grafts after HTX. CONCLUSIONS: We provided experimental evidence that pharmacological inhibition of CatC improves graft function following HTX in rats.


Assuntos
Cisteína Proteases , Transplante de Coração , Ratos , Animais , Humanos , Transplante de Coração/métodos , Catepsina C , Doadores de Tecidos , Ratos Endogâmicos Lew , Coração , Espécies Reativas de Oxigênio , Serina Proteases
4.
Sci Rep ; 13(1): 16122, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752166

RESUMO

Although systolic function characteristically shows gradual impairment in pressure overload (PO)-evoked left ventricular (LV) hypertrophy (LVH), rapid progression to congestive heart failure (HF) occurs in distinct cases. The molecular mechanisms for the differences in maladaptation are unknown. Here, we examined microRNA (miRNA) expression and miRNA-driven posttranscriptional gene regulation in the two forms of PO-induced LVH (with/without systolic HF). PO was induced by aortic banding (AB) in male Sprague-Dawley rats. Sham-operated animals were controls. The majority of AB animals demonstrated concentric LVH and slightly decreased systolic function (termed as ABLVH). In contrast, in some AB rats severely reduced ejection fraction, LV dilatation and increased lung weight-to-tibial length ratio was noted (referred to as ABHF). Global LV miRNA sequencing revealed fifty differentially regulated miRNAs in ABHF compared to ABLVH. Network theoretical miRNA-target analysis predicted more than three thousand genes with miRNA-driven dysregulation between the two groups. Seventeen genes with high node strength value were selected for target validation, of which five (Fmr1, Zfpm2, Wasl, Ets1, Atg16l1) showed decreased mRNA expression in ABHF by PCR. PO-evoked systolic HF is associated with unique miRNA alterations, which negatively regulate the mRNA expression of Fmr1, Zfmp2, Wasl, Ets1 and Atg16l1.


Assuntos
Insuficiência Cardíaca Sistólica , MicroRNAs , Masculino , Ratos , Animais , Insuficiência Cardíaca Sistólica/genética , Ratos Sprague-Dawley , Regulação da Expressão Gênica , Hipertrofia Ventricular Esquerda , MicroRNAs/genética , RNA Mensageiro , Aumento de Peso , Proteína do X Frágil de Retardo Mental
5.
Front Immunol ; 14: 1155343, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426668

RESUMO

Introduction: The shortage of available donor hearts and the risk of ischemia/reperfusion injury restrict heart transplantation (HTX). Alpha-1-antitrypsin (AAT), a well-characterized inhibitor of neutrophil serine protease, is used in augmentation therapy to treat emphysema due to severe AAT deficiency. Evidence demonstrates its additional anti-inflammatory and tissue-protective effects. We hypothesized that adding human AAT in a preservation solution reduces graft dysfunction in a rat model of HTX following extended cold ischemic storage. Methods: The hearts from isogenic Lewis donor rats were explanted, stored for either 1h or 5h in cold Custodiol supplemented with either vehicle (1h ischemia, n=7 or 5h ischemia, n=7 groups) or 1 mg/ml AAT (1h ischemia+AAT, n=7 or 5h ischemia+AAT, n=9 groups) before heterotopic HTX. Left-ventricular (LV) graft function was evaluated in vivo 1.5h after HTX. Immunohistochemical detection of myeloperoxydase (MPO) was performed in myocardial tissue and expression of 88 gene quantified with PCR was analyzed both statistical and with machine-learning methods. Results: After HTX, LV systolic function (dP/dtmax 1h ischemia+AAT 4197 ± 256 vs 1h ischemia 3123 ± 110; 5h ischemia+AAT 2858 ± 154 vs 5h ischemia 1843 ± 104mmHg/s, p<0.05) and diastolic function (dP/dtmin 5h ischemia+AAT 1516 ± 68 vs 5h ischemia 1095 ± 67mmHg/s, p<0.05) at an intraventricular volume of 90µl were improved in the AAT groups compared with the corresponding vehicle groups. In addition, the rate pressure product (1h ischemia+AAT 53 ± 4 vs 1h ischemia 26 ± 1; 5h ischemia+AAT 37 ± 3 vs 5h ischemia 21 ± 1mmHg*beats/min at an intraventricular volume of 90µl; p<0.05) was increased in the AAT groups compared with the corresponding vehicle groups. Moreover, the 5h ischemia+AAT hearts exhibited a significant reduction in MPO-positive cell infiltration in comparison to the 5h ischemia group. Our computational analysis shows that ischemia+AAT network displays higher homogeneity, more positive and fewer negative gene correlations than the ischemia+placebo network. Discussion: We provided experimental evidence that AAT protects cardiac grafts from prolonged cold ischemia during HTX in rats.


Assuntos
Transplante de Coração , Soluções para Preservação de Órgãos , Animais , Humanos , Ratos , Coração , Isquemia , Ratos Endogâmicos Lew , Doadores de Tecidos
6.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37511318

RESUMO

The impact of the machine perfusion of donation after circulatory death (DCD) hearts with the novel Custodiol-N solution on diastolic and coronary microvascular dysfunction is unknown. Porcine DCD-hearts were maintained four hours by perfusion with normothermic blood (DCD-B), hypothermic Custodiol (DCD-C), or Custodiol-N (DCD-CN), followed by one hour of reperfusion with fresh blood, including microvascular and contractile evaluation. In another group (DCD group), one hour of reperfusion, including microvascular and contractile evaluation, was performed without a previous maintenance period (all groups N = 5). We measured diastolic function with a balloon catheter and microvascular perfusion by Laser-Doppler-Technology, resulting in Laser-Doppler-Perfusion (LDP). We performed immunohistochemical staining and gene expression analysis. The developed pressure was improved in DCD-C and DCD-CN. The diastolic pressure decrement (DCD-C: -1093 ± 97 mmHg/s; DCD-CN: -1703 ± 329 mmHg/s; DCD-B: -690 ± 97 mmHg/s; p < 0.05) and relative LDP (DCD-CN: 1.42 ± 0.12; DCD-C: 1.11 ± 0.13; DCD-B: 1.22 ± 0.27) were improved only in DCD-CN. In DCD-CN, the expression of eNOS increased, and ICAM and VCAM decreased. Only in DCD-B compared to DCD, the pathways involved in complement and coagulation cascades, focal adhesion, fluid shear stress, and the IL-6 and IL-17 pathways were upregulated. In conclusion, machine perfusion with Custodiol-N improves diastolic and microvascular function and preserves the microvascular endothelium of porcine DCD-hearts.


Assuntos
Transplante de Coração , Suínos , Animais , Transplante de Coração/métodos , Coração , Reperfusão , Perfusão/métodos , Doadores de Tecidos , Preservação de Órgãos/métodos , Morte
7.
J Surg Res ; 283: 953-964, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36915024

RESUMO

INTRODUCTION: Endothelial dysfunction is a potential side effect of brain death (BD). Ischemia/reperfusion (IR) injury during heart transplantation may lead to further endothelial damage. Protective effects of alpha-1-antitrypsin (AAT), a human neutrophil serine protease inhibitor, have been demonstrated against IR injury. We hypothesized that AAT protects brain-dead rats' vascular grafts from IR injury. METHODS: Donor rats were subjected to BD by inflation of a subdural balloon. After 5.5 h, aortic rings were immediately mounted in organ baths (BD, n = 6 rats) or preserved in saline, supplemented either with vehicle (BD-IR, n = 8 rats) or AAT (BD-IR + AAT, n = 14 rats) for 24 h. During organ bath experiment, rings from both IR groups were exposed to hypochlorite to simulate warm reperfusion-associated endothelial injury. Endothelial function was measured ex vivo. Immunohistochemical staining for caspases was carried out and DNA-strand breaks were evaluated using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling. Data are presented as median (interquartile range). RESULTS: AAT improved IR-induced decreased maximum endothelium-dependent vasorelaxation to acetylcholine in the BD-IR + AAT aortas compared to the BD-IR group (BD: 83 (9-28) % versus BD-IR: 49 (39-60) % versus BD-IR + AAT: 64 (24-42) %, P < 0.05). Additionally, an increase in the rings' sensitivity to acetylcholine was noted after AAT (pD2-value: BD-IR + AAT: 7.35 (7.06-7.89) versus BD-IR: 6.96 (6.65-7.21), P < 0.05). Caspase-3, -8, -9, and -12 immunoreactivity and the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells were significantly decreased by AAT. CONCLUSIONS: AAT alleviates endothelial dysfunction, prevents increased caspase-3, -8, -9, and -12 levels, and decreases apoptotic DNA breakage due to BD and IR injury. This suggests that AAT treatment may be therapeutically beneficial to reduce IR-induced vascular damage.


Assuntos
Morte Encefálica , Traumatismo por Reperfusão , alfa 1-Antitripsina , Animais , Humanos , Ratos , Encéfalo , Caspase 3 , DNA Nucleotidilexotransferase , Isquemia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/prevenção & controle , alfa 1-Antitripsina/farmacologia
8.
Front Cardiovasc Med ; 10: 1288128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239873

RESUMO

Introduction: Coronary artery bypass grafting (CABG) is the most common cardiac surgical procedure. The prognosis of revascularization via CABG is determined by the patency of the used grafts, for which an intact endothelium is essential. The degree of ischemia-reperfusion injury (IRI), which occurs during the harvest and implantation of the grafts, is an important determinant of graft patency. Preconditioning with aspirin, a nonsteroidal anti-inflammatory drug has been shown to reduce the functional and molecular damage of arterial grafts in a rodent model. Studies have found that the zinc-aspirin complex may be able to exert an even better protective effect in pathological cardiovascular conditions. Thus, our aim was to characterize the protective effect of zinc-aspirin complex on free arterial grafts in a rodent model of revascularization. Methods: Donor Lewis rats were treated with either zinc-aspirin, aspirin, or placebo (n = 8) for 5 days, then the aortic arches were harvested and stored in cold preservation solution and implanted heterotopically in the abdominal cavity of the recipient rats, followed by 2 h of reperfusion. There was also a non-ischemia-reperfusion control group (n = 8). Functional measurements using organ bath and histomorphological changes using immunohistochemistry were analyzed. Results: The endothelium dependent maximal vasorelaxation was improved (non-transplanted control group: 82% ± 3%, transplanted control group: 14% ± 2%, aspirin group: 31% ± 4%, zinc-aspirin group: 52% ± 4%), the nitro-oxidative stress and cell apoptosis decreased, and significant endothelial protection was shown in the groups preconditioned with aspirin or zinc-aspirin. However, zinc-aspirin proved to be more effective in the reduction of IRI, than aspirin alone. Discussion: Preconditioning with zinc-aspirin could be a promising way to protect the function and structural integrity of free arterial grafts, thus improving the outcomes of CABG.

9.
Antioxidants (Basel) ; 11(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421466

RESUMO

Microvascular dysfunction (MVD) in cardiac allografts is associated with an impaired endothelial function in the coronary microvasculature. Ischemia/reperfusion injury (IRI) deteriorates endothelial function. Hearts donated after circulatory death (DCD) are exposed to warm ischemia before initiating ex vivo blood perfusion (BP). The impact of cytokine adsorption during BP to prevent MVD in DCD hearts is unknown. In a porcine DCD model, we assessed the microvascular function of hearts after BP with (DCD-BPCytoS, n = 5) or without (DCD-BP, n = 5) cytokine adsorption (CytoSorb®). Microvascular autoregulation was assessed by increasing the coronary perfusion pressure, while myocardial microcirculation was measured by Laser-Doppler-Perfusion (LDP). We analyzed the immunoreactivity of arteriolar oxidative stress markers nitrotyrosine and 4-hydroxy-2-nonenal (HNE), endothelial injury indicating cell adhesion molecules CD54, CD106 and CD31, and eNOS. We profiled the concentration of 13 cytokines in the perfusate. The expression of 84 genes was determined and analyzed using machine learning and decision trees. Non-DCD hearts served as a control for the gene expression analysis. Compared to DCD-BP, relative LDP was improved in the DCD-BPCytoS group (1.51 ± 0.17 vs. 1.08 ± 0.17). Several pro- and anti-inflammatory cytokines were reduced in the DCD-BPCytoS group. The expression of eNOS significantly increased, and the expression of nitrotyrosine, HNE, CD54, CD106, and CD31, markers of endothelial injury, majorly decreased in the DCD-BPCytoS group. Three genes allowed exact differentiation between groups; regulation of HIF1A enabled differentiation between perfusion (DCD-BP, DCD-BPCytoS) and non-perfusion groups. CAV1 allowed differentiation between BP and BPCytoS. The use of a cytokine adsorption device during BP counteracts preload-dependent MVD and preserves the microvascular endothelium by preventing oxidative stress and IRI of coronary arterioles of DCD hearts.

10.
J Am Heart Assoc ; 11(23): e027146, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36382941

RESUMO

Background Hearts procured from circulatory death donors (DCD) are predominantly maintained by machine perfusion (MP) with normothermic donor blood. Currently, DCD heart function is evaluated by lactate and visual inspection. We have shown that MP with the cardioplegic, crystalloid Custodiol-N solution is superior to blood perfusion to maintain porcine DCD hearts. However, no method has been developed yet to predict the contractility of DCD hearts after cardioplegic MP. We hypothesize that the shift of microvascular flow during continuous MP with a cardioplegic preservation solution predicts the contractility of DCD hearts. Methods and Results In a pig model, DCD hearts were harvested and maintained by MP with hypothermic, oxygenated Custodiol-N for 4 hours while myocardial microvascular flow was measured by Laser Doppler Flow (LDF) technology. Subsequently, hearts were perfused with blood for 2 hours, and left ventricular contractility was measured after 30 and 120 minutes. Various novel parameters which represent the LDF shift were computed. We used 2 combined LDF shift parameters to identify bivariate prediction models. Using the new prediction models based on LDF shifts, highest r2 for end-systolic pressure was 0.77 (P=0.027), for maximal slope of pressure increment was 0.73 (P=0.037), and for maximal slope of pressure decrement was 0.75 (P=0.032) after 30 minutes of reperfusion. After 120 minutes of reperfusion, highest r2 for end-systolic pressure was 0.81 (P=0.016), for maximal slope of pressure increment was 0.90 (P=0.004), and for maximal slope of pressure decrement was 0.58 (P=0.115). Identical prediction models were identified for maximal slope of pressure increment and for maximal slope of pressure decrement at both time points. Lactate remained constant and therefore was unsuitable for prediction. Conclusions Contractility of DCD hearts after continuous MP with a cardioplegic preservation solution can be predicted by the shift of LDF during MP.


Assuntos
Transplante de Coração , Doadores de Tecidos , Animais , Suínos , Humanos , Ácido Láctico
11.
Stem Cells Int ; 2022: 7019088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277042

RESUMO

Ischemia/reperfusion injury (IRI) remains a challenge in coronary artery bypass grafting (CABG). Diabetic patients with coronary artery disease are more likely to require CABG and therefore run a high risk for cardiovascular complications. Conditioned medium (CM) from bone marrow-derived mesenchymal stem cells has been shown to have beneficial effects against IRI. We hypothesized that adding CM to physiological saline protects vascular grafts from IRI in diabetic rats. Bone-marrow derived cells were isolated from nondiabetic rat femurs/tibias, and CM was generated. As we previously reported, CM contains 23 factors involved in inflammation, oxidative stress, and apoptosis. DM was induced by streptozotocin administration. Eight weeks later, to measure vascular function, aortic rings were isolated and mounted in organ bath chambers (DM group) or stored in 4°C saline, supplemented either with a vehicle (DM-IR group) or CM (DM-IR+CM group). Although DM was associated with structural changes compared to controls, there were no functional alterations. However, compared to the DM group, in the DM-IR aortas, impaired maximum endothelium-dependent vasorelaxation in response to acetylcholine (DM 86.7 ± 0.1% vs. DM-IR 42.5 ± 2.5% vs. DM-IR+CM 61.9 ± 2.0%, p < 0.05) was improved, caspase-3, caspase-8, caspase-9, and caspase-12 immunoreactivity was decreased, and DNA strand breakage, detected by the TUNEL assay, was reduced by CM. We present the experimental finding that the preservation of vascular grafts with CM prevents endothelial dysfunction after IRI in diabetic rats. Targeting apoptosis by CM may contribute to its protective effect.

12.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806458

RESUMO

Demand for organs is increasing while the number of donors remains constant. Nevertheless, not all organs are utilized due to the limited time window for heart transplantation (HTX). Therefore, we aimed to evaluate whether an iron-chelator-supplemented Bretschneider solution could protect the graft in a clinically relevant canine model of HTX with prolonged ischemic storage. HTX was performed in foxhounds. The ischemic time was standardized to 4 h, 8 h, 12 h or 16 h, depending on the experimental group. Left ventricular (LV) and vascular function were measured. Additionally, the myocardial high energy phosphate and iron content and the in-vitro myocyte force were evaluated. Iron chelator supplementation proved superior at a routine preservation time of 4 h, as well as for prolonged times of 8 h and longer. The supplementation groups recovered quickly compared to their controls. The LV function was preserved and coronary blood flow increased. This was also confirmed by in vitro myocyte force and vasorelaxation experiments. Additionally, the biochemical results showed significantly higher adenosine triphosphate content in the supplementation groups. The iron chelator LK614 played an important role in this mechanism by reducing the chelatable iron content. This study shows that an iron-chelator-supplemented Bretschneider solution effectively prevents myocardial/endothelial damage during short- as well as long-term conservation.


Assuntos
Transplante de Coração , Preservação de Órgãos , Animais , Suplementos Nutricionais , Cães , Glucose , Coração , Ferro , Quelantes de Ferro/farmacologia , Manitol , Miocárdio , Preservação de Órgãos/métodos , Cloreto de Potássio , Procaína , Função Ventricular Esquerda
13.
Am J Physiol Heart Circ Physiol ; 323(1): H204-H222, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35687503

RESUMO

Investigating the effect of sex on pressure unloading therapy in a clinical scenario is limited by several nonstandardized factors. Hence, we sought to study sex-related similarities and differences under laboratory conditions. Pressure overload was induced in male and female rats by aortic banding (AB) for 6 and 12 wk. Age-matched sham-operated animals served as controls. Pressure unloading was performed by aortic debanding at week 6. Different aspects of myocardial remodeling were characterized by echocardiography, pressure-volume analysis, histology, qRT-PCR, and explorative proteomics. Hypertrophy, increased fetal gene expression, interstitial fibrosis, and prolonged active relaxation were noted in the AB groups at week 6 in both sexes. However, decompensation of systolic function and further deterioration of diastolic function only occurred in male AB rats at week 12. AB induced similar proteomic alterations in both sexes at week 6, whereas characteristic differences were found at week 12. After debanding, regression of hypertrophy and recovery of diastolic function took place to a similar extent in both sexes. Nevertheless, fibrosis, transcription of ß-myosin-to-α-myosin heavy chain ratio, and myocardial proteomic alterations were reduced to a greater degree in females than in males. Debanding exposed anti-remodeling properties in both sexes and prevented the functional decline in males. Female sex is associated with greater reversibility of fibrosis, fetal gene expression, and proteomic alterations. Nevertheless, pressure unloading exposes a more pronounced anti-remodeling effect on the functional level in males, which is attributed to the more progressive functional deterioration in AB animals.NEW & NOTEWORTHY The present study is the first to assess the role of sex on pressure unloading-induced reverse and anti-remodeling in a rat model of aortic banding and debanding. Our data indicate that female sex is associated with a greater reversibility of fibrosis, fetal gene expression, and proteomic alterations compared with males. Nevertheless, pressure unloading exposes more anti-remodeling effect on the functional level in males, which is attributed to the more rapid functional deterioration in aortic-banded animals.


Assuntos
Hipertrofia Ventricular Esquerda , Proteômica , Animais , Aorta , Feminino , Fibrose , Masculino , Miocárdio/patologia , Ratos , Remodelação Ventricular
14.
Antioxidants (Basel) ; 11(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35204060

RESUMO

Long-term graft patency determines the prognosis of revascularization after coronary artery bypass grafting (CABG). Ischemia-reperfusion (I/R) injury of the graft suffered during harvesting and after implantation might influence graft patency. Aspirin, a nonsteroidal anti-inflammatory drug improves the long-term patency of vein grafts. Whether aspirin has the same effect on arterial grafts is questionable. We aimed to characterize the beneficial effects of aspirin on arterial bypass grafts in a rodent revascularization model. We gave Lewis rats oral pretreatment of either aspirin (n = 8) or saline (n = 8) for 5 days, then aortic arches were explanted and stored in cold preservation solution. The third group (n = 8) was a non-ischemia-reperfusion control. Afterwards the aortic arches were implanted into the abdominal aorta of recipient rats followed by 2 h of reperfusion. Endothelium-dependent vasorelaxation was examined with organ bath experiments. Immunohistochemical staining were carried out. Endothelium-dependent maximal vasorelaxation improved, nitro-oxidative stress and cell apoptosis decreased, and significant endothelial protection was shown in the aspirin preconditioned group, compared to the transplanted control group. Significantly improved endothelial function and reduced I/R injury induced structural damage were observed in free arterial grafts after oral administration of aspirin. Aspirin preconditioning before elective CABG might be beneficial on free arterial graft patency.

15.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34681252

RESUMO

Vascular ischemia/reperfusion injury (IRI) in patients undergoing coronary artery bypass grafting can result in graft failure and the need for repeat revascularization procedures. DuraGraft® has been shown to protect structure and function in saphenous vein grafts against IRI. We compared the effect of DuraGraft® to saline solution on arterial grafts submitted to IRI. Rat thoracic aortic rings were harvested and immediately mounted in organ bath chambers (control, n = 7 rats) or underwent cold ischemic preservation either in saline (IR, n = 9 rats) or DuraGraft® (IR+Dura, n = 9 rats). Vascular function was measured ex vivo and immunohistochemistry was performed. Impaired maximum vasorelaxation (Rmax) to ACh in the IR-group compared to controls was ameliorated by DuraGraft®, indicating an improvement in endothelial function (Rmax to ACh (%): IR + Dura 73 ± 2 vs. IR 48 ± 3, p < 0.05). Additionally, decreased aortic ring sensitivity to ACh (pD2-value: -log 50% maximum response) seen after IR in the saline group was increased by DuraGraft® (pD2 to ACh: IR+Dura 7.1 ± 0.1 vs. IR 6.3 ± 0.2, p < 0.05). Impaired maximum contractile response to phenylephrine and high potassium chloride concentrations in the IR group compared to controls was significantly improved by DuraGraft®. DuraGraft® alleviates vascular dysfunction following IRI by reducing nitro-oxidative stress and the expression of ICAM-1, without leukocytes engagement.

16.
Clin Hemorheol Microcirc ; 79(1): 121-128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34487033

RESUMO

BACKGROUND: Machine perfusion (MP) is a novel method for donor heart preservation. The coronary microvascular function is important for the transplantation outcome. However, current research on MP in heart transplantation focuses mainly on contractile function. OBJECTIVE: We aim to present the application of Laser-Doppler-Flowmetry to investigate coronary microvascular function during MP. Furthermore, we will discuss the importance of microcirculation monitoring for perfusion-associated studies in HTx research. METHODS: Porcine hearts were cardioplegically arrested and harvested (Control group, N = 4). In an ischemia group (N = 5), we induced global ischemia of the animal by the termination of mechanical ventilation before harvesting. All hearts were mounted on an MP system for blood perfusion. After 90 minutes, we evaluated the effect of coronary perfusion pressures from 20 to 100 mmHg while coronary laser-doppler-flow (LDF) was measured. RESULTS: Ischemic hearts showed a significantly decreased relative LDF compared to control hearts (1.07±0.06 vs. 1.47±0.15; p = 0.034). In the control group, the coronary flow was significantly lower at 100 mmHg of perfusion pressure than in the ischemia group (895±66 ml vs. 1112±32 ml; p = 0.016). CONCLUSIONS: Laser-Doppler-Flowmetry is able to reveal coronary microvascular dysfunction during machine perfusion of hearts and is therefore of substantial interest for perfusion-associated research in heart transplantation.


Assuntos
Transplante de Coração , Animais , Humanos , Lasers , Microcirculação , Perfusão , Suínos , Doadores de Tecidos
17.
J Heart Lung Transplant ; 40(10): 1135-1144, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34420849

RESUMO

BACKGROUND: Warm ischemia followed by blood reperfusion is associated with reduced myocardial contractility. Circulatory death (CD) hearts are maintained by machine perfusion (MP) with blood. However, the impact of MP with histidine-tryptophane-ketoglutarate (HTK) or novel HTK-N solution on reconditioning of CD-heart contractility is unknown. METHODS: In a porcine model, native hearts were directly harvested (control), or CD was induced before harvesting, followed by left ventricular (LV) contractile assessment. In MP-groups, CD-hearts were maintained for 4 h by MP with blood (CD-B), cold oxygenated HTK (CD-HTK) or HTK-N (CD-HTK-N) before contractile evaluation (all groups n = 8). We performed immunohistochemistry of LV myocardial samples. We profiled myocardial expression of 84 oxidative stress-related genes and correlated the findings with myocardial contractility via a machine learning algorithm. RESULTS: HTK-N improved end-systolic pressure (ESP=172±10 vs 132±5 mmHg, p = 0.02) and maximal slope of pressure increment (dp/dtmax=2161±214 vs 1240±167 mmHg/s, p = 0.005) compared to CD, whereas CD-B failed to improve contractility. Dp/dtmax (2161±214 vs 1177±156, p = 0.08) and maximal rate of pressure decrement (dp/dtmin=-1501±228 vs -637±79, p = 0.005) were also superior in CD-HTK-N compared to CD-B. In CD-HTK-N, myocardial 4-hydroxynonenal (marker for oxidative stress; p<0.001), nitrotyrosine (marker for nitrosative stress; p = 0.004), poly(adenosine diphosphate-ribose)polymerase (marker for necrosis; p = 0.028) immunoreactivity and cell swelling (p = 0.008) were decreased compared to CD-B. Strong correlation of gene expression with ESP was identified for oxidative stress defense genes in CD-HTK-N. CONCLUSION: During harvesting procedure, MP with HTK-N reconditions CD-heart systolic and diastolic function by reducing oxidative and nitrosative stress and preventing cardiomyocytes from cell swelling and necrosis.


Assuntos
Circulação Extracorpórea/métodos , Transplante de Coração/métodos , Contração Miocárdica/efeitos dos fármacos , Soluções para Preservação de Órgãos/farmacologia , Preservação de Órgãos/métodos , Doadores de Tecidos , Isquemia Quente/métodos , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Suínos
18.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360539

RESUMO

Vascular ischemia/reperfusion injury (IRI) contributes to graft failure and adverse clinical outcomes following coronary artery bypass grafting. Sodium-glucose-cotransporter (SGLT)-2-inhibitors have been shown to protect against myocardial IRI, irrespective of diabetes. We hypothesized that adding canagliflozin (CANA) (an SGLT-2-inhibitor) to saline protects vascular grafts from IRI. Aortic rings from non-diabetic rats were isolated and immediately mounted in organ bath chambers (control, n = 9-10 rats) or underwent cold ischemic preservation in saline, supplemented either with a DMSO vehicle (IR, n = 8-10 rats) or 50µM CANA (IR + CANA, n = 9-11 rats). Vascular function was measured, the expression of 88 genes using PCR-array was analyzed, and feature selection using machine learning was applied. Impaired maximal vasorelaxation to acetylcholine in the IR-group compared to controls was significantly ameliorated by CANA (IR 31.7 ± 3.2% vs. IR + CANA 51.9 ± 2.5%, p < 0.05). IR altered the expression of 17 genes. Ccl2, Ccl3, Ccl4, CxCr4, Fos, Icam1, Il10, Il1a and Il1b have been found to have the highest interaction. Compared to controls, IR significantly upregulated the mRNA expressions of Il1a and Il6, which were reduced by 1.5- and 1.75-fold with CANA, respectively. CANA significantly prevented the upregulation of Cd40, downregulated NoxO1 gene expression, decreased ICAM-1 and nitrotyrosine, and increased PECAM-1 immunoreactivity. CANA alleviates endothelial dysfunction following IRI.


Assuntos
Canagliflozina/farmacologia , Endotélio Vascular/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Traumatismo por Reperfusão/complicações , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Doenças Vasculares/prevenção & controle , Vasodilatação/efeitos dos fármacos , Animais , Endotélio Vascular/patologia , Técnicas In Vitro , Masculino , Neovascularização Patológica/etiologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Ratos , Ratos Wistar , Doenças Vasculares/etiologia , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia
19.
Interact Cardiovasc Thorac Surg ; 33(5): 779-783, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34195825

RESUMO

OBJECTIVES: Previous studies have demonstrated the impact of internal thoracic artery (ITA) harvesting on microcirculation in parasternal tissues. However, the impact of skeletonized ITA harvesting on intrasternal microcirculation is unknown. Intraskeletal tissue perfusion has been proven to be crucial for deep wound healing. Furthermore, the impact of different levels of surgical preparation quality on intrasternal microcirculation has not been investigated yet. METHODS: Sternal microcirculation (sLDP) was monitored with a novel Laser Doppler Perfusion needle probe, while the ITA was skeletonized in a pig model. To mimic different levels of preparation quality, satellite veins were either coagulated or not during preparation. To show the effect of ideally avoiding any surgical manipulation on sLDP, the ITA was clipped in a third sham-harvested group. RESULTS: sLDP was reduced highly significant to 71 [standard deviation (SD): 9]% (P < 0.001) after skeletonized harvesting of the ITA. Coagulation of the satellite veins as a detrimental surgical factor resulted in a significantly stronger reduction of sLDP to 56 (SD: 11)% (P < 0.05) compared to sLDP with non-coagulated satellite veins. ITA clipping reduced sLDP highly significant to 71 (SD: 8)% (P < 0.001) in the sham-operated group. CONCLUSIONS: ITA harvesting markedly impairs microcirculation of the sternum but remains unavoidable when coronary artery bypass grafting should be performed. Nevertheless, excessive surgical damage and coagulation of satellite veins is avoidable and should be reduced to a minimum to minimize the risk of deep sternal wound healing complications.


Assuntos
Artéria Torácica Interna , Animais , Ponte de Artéria Coronária , Artéria Torácica Interna/diagnóstico por imagem , Artéria Torácica Interna/cirurgia , Microcirculação , Esterno , Suínos , Coleta de Tecidos e Órgãos
20.
Cells ; 10(5)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067928

RESUMO

In patients undergoing coronary artery bypass grafting (CABG), ischemia/reperfusion injury (IRI) is the main contributor to organ dysfunction. Aging-induced vascular damage may be further aggravated during CABG. Favorable effects of conditioned medium (CM) from mesenchymal stem cells (MSCs) have been suggested against IRI. We hypothesized that adding CM to saline protects vascular grafts from IRI in rats. We found that CM contains 28 factors involved in apoptosis, inflammation, and oxidative stress. Thoracic aortic rings from 15-month-old rats were explanted and immediately mounted in organ bath chambers (aged group) or underwent 24 h of cold ischemic preservation in saline-supplemented either with vehicle (aged-IR group) or CM (aged-IR+CM group), prior to mounting. Three-month-old rats were used as referent young animals. Aging was associated with an increase in intima-to-media thickness, an increase in collagen content, higher caspase-12 mRNA levels, and immunoreactivity compared to young rats. Impaired endothelium-dependent vasorelaxation to acetylcholine in the aged-IR group compared to the aged-aorta was improved by CM (aged 61 ± 2% vs. aged-IR 38 ± 2% vs. aged-IR+CM 50 ± 3%, p < 0.05). In the aged-IR group, the already high mRNA levels of caspase-12 were decreased by CM. CM alleviates endothelial dysfunction following IRI in 15-month-old rats. The protective effect may be related to the inhibition of caspase-12 expression.


Assuntos
Aorta Torácica/metabolismo , Meios de Cultivo Condicionados/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Vasodilatação , Fatores Etários , Animais , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Caspase 12/genética , Caspase 12/metabolismo , Células Cultivadas , Isquemia Fria , Colágeno/metabolismo , Estresse do Retículo Endoplasmático , Células Endoteliais/patologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Fibrose , Técnicas In Vitro , Masculino , Ratos Endogâmicos Lew , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...